
PREPARATION AND CATION COMPLEXING PROPERTIES OF SUBSTITUTED MACROCYCLIC POLYETHER-DIESTER COMPOUNDS CONTAINING THE PYRIDINE SUBCYCLIC UNIT

J. S. Bradshaw,*¹ G. E. Maas, R. M. Izatt, J. D. Lamb, and J. J. Christensen, Departments of Chemistry and Chemical Engineering and Contribution No. 155 from the Thermochemical Institute, Brigham Young University, Provo, Utah 84602, U.S.A. and Department of Chemistry, The University, Sheffield S3 7HF, England.

We have previously reported the synthesis and metal cation complexing properties in methanol of compound 1^2 This compound formed strong complexes with Na⁺, K⁺, Ba²⁺, and Ag⁺ with log K values ranging from 4.3 to 4.9.² We now report the synthesis of compounds 2, 3, 5, and 6, the results of a study of the temperature dependent ¹H n.m.r. spectra for the complexes of compounds] - ${\mathfrak h}$ with primary alkylammonium cations, and the calorimetric results for the reaction of compound 2 with several uni- and bivalent cations.

l n = 1, X = H

The substituted pyridino compounds were prepared from In = 1, X = H 2 n = 1, X = C1 3 n = 1, X = OCH₃ 4 n = 2, X = C1 5 n = 2, X = C1 6 n = 2, X = OCH₃ 1 ne Substituted 2,6-pyridinedicarbonyl chloride and tetra- or pentaethylene glycol as we have previously re-ported.^{2,3} Compound 2, for example, was prepared from 4-chloro-2,6-pyridinedicarbonyl chloride and tetraethylene glycol to give white crystals (91%);⁴ m.p. 104-105°C. Com-

pounds 3, 5, and 6 were similarly prepared: $3(54\%)^4$, m.p. 116-117°C; 5(71%), ⁴ m.p. 70-71°C; 6(19%), ⁴ m.p. 122-123°C. Compound 4 was previously reported.³

Formation of complexes of compounds 1 - 6 with primary alkylammonium cations in an equimolar mixture of the two reactants was accompanied by significant chemical shift changes in the ¹H n.m.r. spectra in CD_2Cl_2 .⁵ The temperature dependencies of the ¹H n.m.r. spectra for the complexes of 1-3 with RNH₃ClO₄ (R = phenyl, <u>tert</u>-butyl, and isopropyl) and with RNH₃SCN (R = phenyl) and for the complexes of 4 - 6 with RNH₃ClO₄ (R = phenyl and <u>tert</u>-butyl) have been examined (see Table 1). At low temperatures, the multiplet peak attributable to the ester methylene hydrogens ($COOCH_{2}$) separated into a doublet and a multiplet of equal intensities with a Δv of 136 - 260 Hz for complexes of 1 - 3 and 43 - 64 Hz for complexes of 4 - 6. This temperature dependence was not observed in the ¹Hn.m.r. spectra for the free ligands. Calculations of the kinetic parameters based on the temperature, T_c at which the two separated peaks coalesced⁶⁻⁹ in each case are shown in Table 1. The ΔG_c^{\neq} values calculated from the data obtained in solutions where the molar ratio of crown to salt, Č:S, is l can be equated to the free energies of activation $(\Delta G_{d+ri}^{\dagger})$ for an equilibration of the ammonium ion from one face of the ligand to the other face with both dissociative and ring inversion components. In solutions where the molar ratio C:S = 2:1, the measured ΔG_{C}^{\neq} probably involves an equilibration between complexed and uncomplexed ligands and thus can be equated to the free energy of dissociation (ΔG_{d}^{\dagger}) .⁹ The difference $(\Delta G_{d+ri}^{\dagger} - \Delta G_{d}^{\dagger})$ reflects the free energy of ring inversion which for

TABLE 1.	Temperature Dependent ¹ H n.m.r. Spectral Data and Kinetic Parameters for
	the Complexation of Primary Alkylammonium Salts with Compounds $1 - 6$. ^a

Molar Ratio <u>(C:S)</u>	<u>R</u>	RNH ₃ X X	Compound	^T c <u>+3°C</u>	Δυ <u>+</u> 2 Hz (T, °C)	K _c -1	∆G [≠] c <u>+</u> 0.3 <u>kcal/mol</u>
1:1	PhCH ₂	C10 ₄	1	+10	260 (-50)	577	13.0
	2	4	2 3	0	206 (-50)	518	12.5
			3	+25	246 (~45)	547	13.7
			4 5 6	-30	44 (-70)	98	11.6
			5	-25	62 (-70)	137	12.0
			6	-15	48 (-60)	108	12.6
	PhCH ₂	SCN	1	-40	237 (-55)	528	10.6
	2		2 3	-55	260(-100)	577	9.7
			3	-30	255 (-80)	567	11.1
	t-Bu	C10 ₄	1	-20	163 (-70)	362	11.8
		4	2	-30	150 (-70)	332	11.3
			3	-10	136 (-70)	303	12.3
			4	-85	48(-105)	108	9.1
			4 5 6	-90	43(-105)	93	8.9
			6	-75	64(-100)	142	9.5
	iPr	C10 ₄	1	-10	194 (-70)	430	12.2
		4	2 3	-20	194 (-60)	430	11.7
			3	-10	196 (-60)	435	12.2
2:1	PhCH ₂	C10 ₄	1	-5	238 (-50)	528	12.3
	2	31°4	2	-10	251 (-60)	557	12.0
			2 3	0	233 (-50)	518	12.5

^aAll spectra were recorded in CD_2CI_2 at 220 MHz on a Perkin-Elmer R34 spectrometer; ¹H n.m.r. probe was $COOCH_2$ in each case. T_c = coalescence temperature; $\Delta v =$ frequency separation for the ¹H n.m.r. probe; k_c = exchange rate constant at T_c ($k_c = \pi \Delta v/2^{\frac{1}{2}}$)¹²; ΔG_c^{\neq} = free energy of activation at T_c calculated from the Eyring Equation.

the complexes of 1 - 3 is similar to that reported for other systems of restricted rotation⁹ but is much less than that reported for the less sterically hindered crown compounds.⁸ For compounds 4 - 6, experiments involving C:S = 2:1 produced ¹H n.m.r. spectra too complex to be analyzed.

For the eighteen-membered rings (1 - 3), ΔG_c^{\neq} for reaction with the four different salts (Table 1) gave the order OCH₃ > H > C1. This order parallels the basicity of 4-substituted pyridines where OCH₃ > H > C1.¹⁰ A similar effect for the complexation of benzene diazonium salts by compounds 4 - 6 was observed by Bartsch and co-workers.¹¹

In addition to the macrocycles mentioned above, the smaller fifteen-membered ring compounds (n = 0) and the larger twenty-four membered ring compounds (n = 3) analogous to compounds 1 - 6 were synthesized. No ¹H n.m.r. evidence was found for complexation of primary alkylammonium cations by the fifteen-membered ring compounds. The twenty-four-membered ring compounds showed evidence of complexation, but the ¹H n.m.r. spectra for these complexes showed no temperature dependence. The dial-kylammonium salts showed no evidence of complexation under the conditions of this investigation with any of the macrocycles studied.

A calorimetric study was made to determine the thermodynamic log K, ΔH , and T ΔS for reaction of compound 2 with several inorganic cations in methanol. Table 2 compares these results to corresponding data for compound 1 reported earlier.² Two features of the data are significant. First,

∿ ~		ν···	•		
Cation	Log K		∆H (kcal,	/mol)	T∆S (kcal/mol)
Na ⁺	4.14 <u>+</u> 0.07	(4.29)	-6.03 <u>+</u> 0.18	(-6.19)	-0.38 (-0.34)
κ+	4.73 <u>+</u> 0.08	(4.66)	-7.97 <u>+</u> 0.23	(-9.3)	-1.52 (-2.95)
Rb ⁺	3.56 <u>+</u> 0.09	(4.24)	-9.23 <u>+</u> 0.27	(-9.07)	-4.37 (-3.29)
Cs ⁺	a	(a)	a	(a)	
Ag ⁺	3.76 <u>+</u> 0.02	(4.88)	-8.04 <u>+</u> 0.08	(-7.83)	-2.91 (-1.17)
NH4+	2.86 <u>+</u> 0.03	(2.93)	-6.78 <u>+</u> 0.16	(-7.75)	-2.88 (-3.75)
Li ⁺ ,Mg ²⁺ ,Ca ²⁺	b		b		
Sr ²⁺	с		с		
Ba ²⁺	с	(4.34)	с	(-6.03)	(0.11)

TABLE 2. Log K ΔH , and T ΔS for Reaction of Inorganic Cations with Compound 2 and Compound 1 (in parentheses) in Methanol at 25°C.

^aReaction of stoichiometry other than 1:1 not resolved.

^bNo measurable heat, indicating $\Delta H \approx 0$ and/or log K very small.

^CLigand decomposition occurs.

addition of the chlorine atom to compound] to give compound 2 does not significantly alter the stabilities of alkali metal and NH_4^+ complexes of the ligand although selectivity for K^+ is improved. The Ag⁺ complex is significantly destabilized, probably due to the decreased basicity of the pyridyl nitrogen atom resulting from the presence of the 4-chloro group. Thus, the nitrogen atom plays a much more significant role in the binding of Ag⁺ by the macrocycle than in the binding of the alkali metal cations. The second significant feature of these data is that compound 2, unlike compound 1, decomposes slowly in the presence of Sr^{2+} and Ba^{2+} . Calorimetric measurement of an unusually large amount of heat upon addition of compound 2 to solutions of Sr^{2+} or Ba^{2+} led to initial suspicions of an unusual reaction type. These suspicions were confirmed when the ¹H n.m.r. spectrum of Sr^{2+} or Ba^{2+} mixtures with compound 2 in CD₃OD showed a slow (over two days) decomposition of the ligand, probably via transesterification of both ester linkages. An analogous experiment in the presence of K^+ showed no ligand deterioration. Unfortunately compound 3 is not sufficiently soluble in methanol to allow measurement of data for this compound such as found in Table 2.

Acknowledgment. The authors thank Dr. J. F. Stoddart and Dr. D. A. Laidler for their helpful discussions and for alkylammonium salts. Support from National Science Foundation Grant CHE76-10991 is also acknowledged.

References and Footnotes

- 1. On leave at The University, Sheffield, Fall 1978.
- R. M. Izatt, J. D. Lamb, R. E. Asay, G. E. Maas, J. S. Bradshaw, J. J. Christensen, and S. S. Moore, J. Am. Chem. Soc., <u>99</u>, 6134 (1977).
- J. S. Bradshaw, R. E. Asay, G. E. Maas, R. M. Izatt, and J. J. Christensen, J. Heterocycl. Chem., <u>15</u>, 825 (1978).

- 4. Satisfactory molecular weights and elemental analyses were obtained on all newly reported compounds. Melting points are uncorrected. The structures of all compounds are consistent with those derived from i.r. and n.m.r. spectra.
- 5. For example, the singlet at 3.79 ± 0.01 for the eight OCH, hydrogens for compounds 1 3 divided into two multiplets of four hydrogens each for the complexes of these compounds.
- 6. L. C. Hodgkinson, S. J. Leigh, and I. O. Sutherland, J. Chem. Soc., Chem. Commun., 1976, 639.
- 7. D. A. Laidler and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 1977, 481.
- 8. J. C. Metcalfe, J. F. Stoddart, and G. Jones, J. Am. Chem. Soc., 99, 8317 (1977).
- 9. H. F. Beckford, R. M. King, J. F. Stoddart, and R. F. Newton, Tetrahedron Lett., 1978, 171.
- I. I. Grandberg, G. K. Faizova, and A. N. Kost, *Khim. Geterotsikl. Soedin.*, 1966, 561; *Chem. Abstr.*, <u>66</u>, 10453b (1967).
- R. A. Bartsch, Second Symposium on Macrocyclic Compounds, Brigham Young University, Provo, Utah, August 14-16, 1978.
- 12. I. O. Sutherland, Ann. Reports N.M.R. Spectroscopy, 4, 71 (1971).

(Received in UK 24 November 1978)